7. Bibliography¶
Grégoire Allaire. Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation. OUP Oxford, 2007.
Antonio Ambrosetti and Giovanni Prodi. A primer of nonlinear analysis. Number 34. Cambridge University Press, 1995.
Pavel Bochev and Richard B Lehoucq. On the finite element solution of the pure neumann problem. SIAM review, 47(1):50–66, 2005.
Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media, 2010.
Alexandre Joel Chorin and Jerrold E Marsden. A mathematical introduction to fluid mechanics. Volume 3. Springer, 1990.
Philippe G Ciarlet. Mathematical elasticity: Three-dimensional elasticity. SIAM, 2021.
Peter Deuflhard. Newton methods for nonlinear problems: affine invariance and adaptive algorithms. Volume 35. Springer Science & Business Media, 2011.
Pascal Jean Frey and Paul-Louis George. Mesh generation: application to finite elements. ISTE, 2007.
Yoshikazu Giga. Surface evolution equations. Springer, 2006.
Tom Gustafsson, Rolf Stenberg, and Juha Videman. On finite element formulations for the obstacle problem–mixed and stabilised methods. Computational Methods in Applied Mathematics, 17(3):413–429, 2017.
Frédéric Hecht, Gontran Lance, and Emmanuel Trélat. Pde-constrained optimization within freefem. 2024.
Michael Hintermuller, Kazufumi Ito, and Karl Kunisch. The primal-dual active set strategy as a semismooth newton method. SIAM Journal on Optimization, 13(3):865–888, 2002.
Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces. Volume 153. Springer Science & Business Media, 2006.
Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. Journal of computational physics, 79(1):12–49, 1988.
James Albert Sethian. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Volume 3. Cambridge university press, 1999.
Roger Temam and Alain Miranville. Mathematical modeling in continuum mechanics. Cambridge University Press, 2005.