7. Bibliography

[All07]

Grégoire Allaire. Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation. OUP Oxford, 2007.

[AP95]

Antonio Ambrosetti and Giovanni Prodi. A primer of nonlinear analysis. Number 34. Cambridge University Press, 1995.

[BL05]

Pavel Bochev and Richard B Lehoucq. On the finite element solution of the pure neumann problem. SIAM review, 47(1):50–66, 2005.

[Bre10]

Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Springer Science & Business Media, 2010.

[CM90]

Alexandre Joel Chorin and Jerrold E Marsden. A mathematical introduction to fluid mechanics. Volume 3. Springer, 1990.

[Cia21]

Philippe G Ciarlet. Mathematical elasticity: Three-dimensional elasticity. SIAM, 2021.

[Deu11]

Peter Deuflhard. Newton methods for nonlinear problems: affine invariance and adaptive algorithms. Volume 35. Springer Science & Business Media, 2011.

[FG07]

Pascal Jean Frey and Paul-Louis George. Mesh generation: application to finite elements. ISTE, 2007.

[Gig06]

Yoshikazu Giga. Surface evolution equations. Springer, 2006.

[GSV17]

Tom Gustafsson, Rolf Stenberg, and Juha Videman. On finite element formulations for the obstacle problem–mixed and stabilised methods. Computational Methods in Applied Mathematics, 17(3):413–429, 2017.

[HLT24]

Frédéric Hecht, Gontran Lance, and Emmanuel Trélat. Pde-constrained optimization within freefem. 2024.

[HIK02]

Michael Hintermuller, Kazufumi Ito, and Karl Kunisch. The primal-dual active set strategy as a semismooth newton method. SIAM Journal on Optimization, 13(3):865–888, 2002.

[OF06]

Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces. Volume 153. Springer Science & Business Media, 2006.

[OS88]

Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. Journal of computational physics, 79(1):12–49, 1988.

[Set99]

James Albert Sethian. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Volume 3. Cambridge university press, 1999.

[TM05]

Roger Temam and Alain Miranville. Mathematical modeling in continuum mechanics. Cambridge University Press, 2005.