6.
Appendix
ΒΆ
Contents:
6.1. Differential calculus
6.1.1. Basic definitions and notations
6.1.2. Derivatives in normed vector spaces
6.1.3. Dual spaces
6.1.4. Banach spaces
6.1.5. Hilbert spaces
6.1.6. The implicit function theorem
6.2. Complements of functional analysis
6.2.1. The Banach contraction mapping theorem
6.2.2. The uniqueness of the limit argument
6.2.3. Weak convergence in a Hilbert space
6.2.4. Compactness
6.3. More advanced functional analysis
6.3.1. Nemitski operators
6.4. Convexity
6.4.1. Projection onto convex subsets in Hilbert spaces
6.5. Optimization theory
6.5.1. Necessary first-order optimality conditions
6.5.2. The convex case
6.6. PDE
6.6.1. A few words about the theory of distributions
6.6.2. A glance at elliptic regularity theory
Navigation
Contents:
1. Generalities
2. Advanced features
3. Structure mechanics
4. Fluid mechanics
5. Optimal design
6. Appendix
6.1. Differential calculus
6.2. Complements of functional analysis
6.3. More advanced functional analysis
6.4. Convexity
6.5. Optimization theory
6.6. PDE
7. Bibliography
8. Glossary
Related Topics
Documentation overview
Previous:
5.5.
Shape optimization methods in fluid mechanics
Next:
6.1.
A reminder of differential calculus